Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Int J Oral Sci ; 16(1): 27, 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38548721

RESUMO

Uncovering the risk factors of pulmonary hypertension and its mechanisms is crucial for the prevention and treatment of the disease. In the current study, we showed that experimental periodontitis, which was established by ligation of molars followed by orally smearing subgingival plaques from patients with periodontitis, exacerbated hypoxia-induced pulmonary hypertension in mice. Mechanistically, periodontitis dysregulated the pulmonary microbiota by promoting ectopic colonization and enrichment of oral bacteria in the lungs, contributing to pulmonary infiltration of interferon gamma positive (IFNγ+) T cells and aggravating the progression of pulmonary hypertension. In addition, we identified Prevotella zoogleoformans as the critical periodontitis-associated bacterium driving the exacerbation of pulmonary hypertension by periodontitis, and the exacerbation was potently ameliorated by both cervical lymph node excision and IFNγ neutralizing antibodies. Our study suggests a proof of concept that the combined prevention and treatment of periodontitis and pulmonary hypertension are necessary.


Assuntos
Placa Dentária , Hipertensão Pulmonar , Periodontite , Humanos , Camundongos , Animais , Linfócitos T/patologia , Bactérias , Placa Dentária/microbiologia
2.
Bioeng Transl Med ; 8(6): e10570, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38023700

RESUMO

Doxorubicin (DOX)-induced cardiotoxicity limits its broad use as a chemotherapy agent. The development of effective and non-invasive strategies to prevent DOX-associated adverse cardiac events is urgently needed. We aimed to examine whether and how low-intensity pulsed ultrasound (LIPUS) plays a protective role in DOX-induced cardiotoxicity. Male C57BL/6J mice were used to establish models of both acute and chronic DOX-induced cardiomyopathy. Non-invasive LIPUS therapy was conducted for four consecutive days after DOX administration. Cardiac contractile function was evaluated by echocardiography. Myocardial apoptosis, oxidative stress, and fibrosis were analyzed using terminal deoxynucleotidyl transferase-mediated dUTP nick end labelling (TUNEL) staining, dihydroethidium (DHE) staining, and picrosirius red staining assays. RNA-seq analysis was performed to unbiasedly explore the possible downstream regulatory mechanisms. Neutrophil recruitment and infiltration in the heart were analyzed by flow cytometry. The S100a8/a9 inhibitor ABR-238901 was utilized to identify the effect of S100a8/a9 signaling. We found that LIPUS therapy elicited a great benefit on DOX-induced heart contractile dysfunction in both acute and chronic DOX models. Chronic DOX administration increased serum creatine kinase and lactate dehydrogenase levels, as well as myocardial apoptosis, all of which were significantly mitigated by LIPUS. In addition, LIPUS treatment prevented chronic DOX-induced cardiac oxidative stress and fibrosis. RNA-seq analysis revealed that LIPUS treatment partially reversed alterations of gene expression induced by DOX. Gene ontology (GO) analysis of the downregulated genes between DOX-LIPUS and DOX-Sham groups indicated that inhibition of neutrophil chemotaxis might be involved in the protective effects of LIPUS therapy. Flow cytometry analysis illustrated the inhibitory effects of LIPUS on DOX-induced neutrophil recruitment and infiltration in the heart. Moreover, S100 calcium binding protein A8/A9 (S100a8/a9) was identified as a potential key target of LIPUS therapy. S100a8/a9 inhibition by ABR-238901 showed a similar heart protective effect against DOX-induced cardiomyopathy to LIPUS treatment. LIPUS therapy prevents DOX-induced cardiotoxicity through inhibition of S100a8/a9-mediated neutrophil recruitment to the heart, suggesting its potential application in cancer patients undergoing chemotherapy with DOX.

3.
Cardiovasc Res ; 119(8): 1706-1717, 2023 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-36943793

RESUMO

AIMS: Positive associations between periodontitis (PD) and atherosclerosis have been established, but the causality and mechanisms are not clear. We aimed to explore the causal roles of PD in atherosclerosis and dissect the underlying mechanisms. METHODS AND RESULTS: A mouse model of PD was established by ligation of molars in combination with application of subgingival plaques collected from PD patients and then combined with atherosclerosis model induced by treating atheroprone mice with a high-cholesterol diet (HCD). PD significantly aggravated atherosclerosis in HCD-fed atheroprone mice, including increased en face plaque areas in whole aortas and lesion size at aortic roots. PD also increased circulating levels of triglycerides and cholesterol, hepatic levels of cholesterol, and hepatic expression of rate-limiting enzymes for lipogenesis. Using 16S ribosomal RNA (rRNA) gene sequencing, Fusobacterium nucleatum was identified as the most enriched PD-associated pathobiont that is present in both the oral cavity and livers. Co-culture experiments demonstrated that F. nucleatum directly stimulated lipid biosynthesis in primary mouse hepatocytes. Moreover, oral inoculation of F. nucleatum markedly elevated plasma levels of triglycerides and cholesterol and promoted atherogenesis in HCD-fed ApoE-/- mice. Results of RNA-seq and Seahorse assay indicated that F. nucleatum activated glycolysis, inhibition of which by 2-deoxyglucose in turn suppressed F. nucleatum-induced lipogenesis in hepatocytes. Finally, interrogation of the molecular mechanisms revealed that F. nucleatum-induced glycolysis and lipogenesis by activating PI3K/Akt/mTOR signalling pathway in hepatocytes. CONCLUSIONS: PD exacerbates atherosclerosis and impairs lipid metabolism in mice, which may be mediated by F. nucleatum-promoted glycolysis and lipogenesis through PI3K/Akt/mTOR signalling in hepatocytes. Treatment of PD and specific targeting of F. nucleatum are promising strategies to improve therapeutic effectiveness of hyperlipidaemia and atherosclerosis.


Assuntos
Aterosclerose , Periodontite , Camundongos , Animais , Fusobacterium nucleatum/genética , Lipogênese , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Camundongos Knockout para ApoE , Aterosclerose/etiologia , Fígado , Triglicerídeos , Serina-Treonina Quinases TOR
4.
J Cardiovasc Transl Res ; 15(4): 816-827, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35040081

RESUMO

Microglia/macrophage activation plays an essential role in Ischemic stroke (IS). Nuclear receptor corepressor 1 (NCoR1) has been identified as a vital regulator in macrophages. The present study aims to explore the functions of macrophage NCoR1 in IS. Macrophage NCoR1 knockout (MNKO) mice and littermate control mice were subjected to middle cerebral artery occlusion (MCAO). Our data showed that macrophage NCoR1 deficiency significantly reduced the infarct size and infarct volume as well as brain edema after MCAO. Additionally, MNKO induced less microglia/macrophage infiltration and activation, neuroinflammation, apoptosis of neuronal cells, and BBB disruption in brains after IS. Mechanistic studies revealed that NCoR1 interacted with LXRß in microglia and MNKO impaired the activation of the Nuclear factor-κB signaling pathway in brains after IS. Our data demonstrated that macrophage NCoR1 deficiency inhibited microglia/macrophage activation and protected against IS. Targeting NCoR1 in microglia/macrophage may be a potential approach for IS treatment.


Assuntos
Isquemia Encefálica , AVC Isquêmico , Acidente Vascular Cerebral , Camundongos , Animais , Camundongos Endogâmicos C57BL , Macrófagos/metabolismo , Infarto da Artéria Cerebral Média/genética , Camundongos Knockout , Acidente Vascular Cerebral/genética , Acidente Vascular Cerebral/prevenção & controle , Correpressor 1 de Receptor Nuclear/genética
5.
Front Pharmacol ; 11: 581011, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33041826

RESUMO

Activation of the NLRP3 inflammasome results in caspase 1 cleavage, which subsequently leads to IL-1ß and IL-18 secretion, as well as pyroptosis, and aberrant activation of the inflammasome is involved in several diseases such as type 2 diabetes, atherosclerosis, multiple sclerosis, Parkinson's disease, and Alzheimer's disease. NLRP3 activity is regulated by various kinases. Genetic and pharmacological inhibition of the hematopoietic cell kinase (HCK), a member of the Src family of non-receptor tyrosine kinases (NRTKs) primarily expressed in myeloid cells, has previously been shown to ameliorate inflammation, indicating that it may be involved in the regulation of microglia function. However, the underlying mechanism is not known. Hence, in this study, we aimed to investigate the role of HCK in NLRP3 inflammasome activation. We demonstrated that HCK silencing inhibited NLRP3 inflammasome activation. Furthermore, the HCK-specific inhibitor, A419259, attenuated the release of IL-1ß and caspase 1(P20) from the macrophages and microglia and reduced the formation of the apoptosis-associated speck-like protein with a CARD domain (ASC) oligomer. We also observed that HCK binds to full length NLRP3 and its NBD(NACHT) and LRR domains, but not to the PYD domain. In vivo, the HCK inhibitor attenuated the LPS-induced inflammatory response in the liver of LPS-challenged mice. Collectively, these results suggested that HCK plays a critical role in NLRP3 inflammasome activation. Our results will enhance current understanding regarding the effectiveness of HCK inhibitors for treating acute inflammatory diseases.

6.
Cell Death Dis ; 8(10): e3117, 2017 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-29022905

RESUMO

Oxidative stress-induced mitochondrial dysfunction and neuronal cell death have important roles in the development of neurodegenerative diseases. Dynamin related protein 1 (Drp1) is a critical factor in regulating mitochondrial dynamics. A variety of posttranslational modifications of Drp1 have been reported, including phosphorylation, ubiquitination, sumoylation and S-nitrosylation. In this study, we found that c-Abl phosphorylated Drp1 at tyrosine 266, 368 and 449 in vitro and in vivo, which augmented the GTPase activity of Drp1 and promoted Drp1-mediated mitochondrial fragmentation. Consistently, c-Abl-mediated phosphorylation is important for GTPase activity of Drp1 and mitochondrial fragmentation. Furthermore, we found that Drp1 phosphorylation mediated by c-Abl is required for oxidative stress-induced cell death in primary cortical neurons. Taken together, our findings reveal that c-Abl-Drp1 signaling pathway regulates oxidative stress-induced mitochondrial fragmentation and cell death, which might be a potential target for the treatment of neurodegenerative diseases.


Assuntos
Morte Celular/fisiologia , Dinaminas/metabolismo , Mitocôndrias/patologia , Dinâmica Mitocondrial/fisiologia , Estresse Oxidativo/fisiologia , Proteínas Proto-Oncogênicas c-abl/metabolismo , Animais , Linhagem Celular , GTP Fosfo-Hidrolases/metabolismo , Células HEK293 , Humanos , Peróxido de Hidrogênio/farmacologia , Camundongos , Camundongos Knockout , Doenças Neurodegenerativas/patologia , Neurônios/patologia , Fosforilação
7.
Traffic ; 17(12): 1286-1296, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27717139

RESUMO

Triggering receptor expressed on myeloid cells 2 (Trem2), an immune-modulatory receptor, is preferentially expressed in microglia of central nervous system. Trem2 might be involved in the development of Alzheimer's disease (AD) through regulating the inflammatory responses and phagocytosis of microglia. However, the intracellular trafficking of Trem2 remains unclear. In this study, we showed that Trem2 in the plasma membrane underwent endocytosis and recycling. Trem2 is internalized in a clathrin-dependent manner and then recycled back to the plasma membrane through vacuolar protein sorting 35 (Vps35), the key component of cargo recognition core of retromer complex, but not Rab11. When Vps35 is knocked down, Trem2 accumulated in the lysosomes but was not degraded. More importantly, Vps35 deficiency leads to excessive lipopolysaccharide (LPS)-induced inducible nitric oxide synthase (iNOS) expression and IL-6 production, which can be abolished by Trem2 overexpression. Furthermore, R47H Trem2, an AD-associated mutant, failed to interact with Vps35 and became unstable compared with wild-type Trem2. Our study suggests that Vps35/retromer is responsible for recycling of Trem2 in the regulation of microglial function such as proinflammatory responses, whereas R47H mutation impairs Trem2 trafficking, which might contribute to AD.


Assuntos
Membrana Celular/metabolismo , Endocitose/fisiologia , Lisossomos/metabolismo , Glicoproteínas de Membrana/metabolismo , Microglia/fisiologia , Receptores Imunológicos/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Doença de Alzheimer/imunologia , Doença de Alzheimer/metabolismo , Animais , Células HEK293 , Células HeLa , Humanos , Interleucina-6/biossíntese , Lipopolissacarídeos/farmacologia , Glicoproteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos C57BL , Microglia/imunologia , Microglia/metabolismo , Mutação , Óxido Nítrico Sintase Tipo II/metabolismo , Fagocitose/imunologia , Fagocitose/fisiologia , Transporte Proteico , Receptores Imunológicos/genética , Proteínas de Transporte Vesicular/genética
8.
Sci Rep ; 6: 19418, 2016 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-26887613

RESUMO

Secreted Wnts play diverse roles in a non-cell-autonomous fashion. However, the cell-autonomous effect of unsecreted Wnts remains unknown. Endoplasmic reticulum (ER) stress is observed in specialized secretory cells and participates in pathophysiological processes. The correlation between Wnt secretion and ER stress remains poorly understood. Here, we demonstrated that Drosophila miR-307a initiates ER stress specifically in wingless (wg)-expressing cells through targeting wntless (wls/evi). This phenotype could be mimicked by retromer loss-of-function or porcupine (porc) depletion, and rescued by wg knockdown, arguing that unsecreted Wg triggers ER stress. Consistently, we found that disrupting the secretion of human Wnt5a also induced ER stress in mammalian cells. Furthermore, we showed that a C-terminal KKVY-motif of Wg is required for its retrograde Golgi-to-ER transport, thus inducing ER stress. Next, we investigated if COPI, the regulator of retrograde transport, is responsible for unsecreted Wg to induce ER stress. To our surprise, we found that COPI acts as a novel regulator of Wg secretion. Taken together, this study reveals a previously unknown Golgi-to-ER retrograde route of Wg, and elucidates a correlation between Wnt secretion and ER stress during development.


Assuntos
Proteínas de Drosophila/metabolismo , Estresse do Retículo Endoplasmático , Retículo Endoplasmático/metabolismo , Complexo de Golgi/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Proteína Wnt1/metabolismo , Animais , Linhagem Celular , Complexo I de Proteína do Envoltório/genética , Complexo I de Proteína do Envoltório/metabolismo , Proteínas de Drosophila/genética , Drosophila melanogaster , Retículo Endoplasmático/genética , Complexo de Golgi/genética , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Transporte Proteico/genética , Receptores Acoplados a Proteínas G/genética , Proteína Wnt-5a/genética , Proteína Wnt-5a/metabolismo , Proteína Wnt1/genética
9.
Sci Rep ; 6: 20158, 2016 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-26892273

RESUMO

Type I interferon (IFN-I) is critical for a host against viral and bacterial infections via induction of hundreds of interferon-stimulated genes (ISGs), but the mechanism underlying the regulation of IFN-I remains largely unknown. In this study, we first demonstrate that ISG expression is required for optimal IFN-ß levels, an effect that is further enhanced by endoplasmic reticulum (ER) stress. Furthermore, we identify mitochondrial calcium uniporter protein (MCU) as a mitochondrial antiviral signaling protein (MAVS)-interacting protein that is important for ER stress induction and amplified MAVS signaling activation. In addition, by performing an ectopic expression assay to screen a library of 117 human ISGs for effects on IFN-ß levels, we found that tumor necrosis factor receptor 1 (TNFR1) significantly increases IFN-ß levels independent of ER stress. Altogether, our findings suggest that MCU and TNFR1 are involved in the regulation of RIG-I-like receptors (RLR) signaling.


Assuntos
Canais de Cálcio/metabolismo , RNA Helicases DEAD-box/metabolismo , Estresse do Retículo Endoplasmático , Fatores Reguladores de Interferon/genética , Fatores Reguladores de Interferon/metabolismo , Transdução de Sinais , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Linhagem Celular , Expressão Gênica , Humanos , Interferon beta/metabolismo , Camundongos , Camundongos Knockout , Ligação Proteica , Receptores Tipo I de Fatores de Necrose Tumoral/genética , Receptores Tipo I de Fatores de Necrose Tumoral/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA